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A general expression of the perfect matching number for the I x m x n cubic lattice 
was conjectured and examined for infinitely large systems. The asymptotic value of the 
square of the perfect matching number was calculated by numerical integration. The 
present treatment will give a key to obtain the true analytic solution of the perfect match- 
ing numbers for the 3-dimensional lattices. 

1. I n t r o d u c t i o n  

The  number  of  perfect match ing  for certain kinds of  lattices is a key quant i ty  in 
the theoret ical  t reatments  of adsorpt ion of  d ia tomic molecules on metall ic surfaces 
(dimer statistics), nearest-neighbor interact ion on the lattice points  in anti-ferro- 
magnet ic  metals  (Ising model),  and stability of aromat ic  hydrocarbon  molecules 
(Kekul6 structures).  Thus  the analytical expression for the perfect match ing  num- 
ber, K, has been one of the cont inuous  targets in these fields, rather  than in the 
graph  theory [1-3]. 

Especially for the 2-dimensional  planar  lattice, Kasteleyn [4] and Temper ley  
and Fisher [5,6] independent ly  derived the following beautiful expression: 

K(2mx2n)=22mn~i~i[cos2 ( k r r  ) ( 2 n @ l )  ] k=l l=l ~mm Sc 1 + c°s2 " (1) 

It  was shown that  for the rn x n torus lattice the K number  is given as a linear combi-  
na t ion  of  pfaffians [4]. 

On the other  hand,  Hosoya  and Ohkami  devised an opera tor  technique [7,8] 
which enables systematic derivation of  the recursion formula  of  the perfect  match-  
ing numbers  for periodic lattices. Hock  and McQuis tan  obta ined the recursion for- 
mula  of  various series of  graphs [9,10]. 
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By the use of the results obtained by the operator technique and the method of 
determinant given by Kasteleyn the present authors derived the expressions for the 
perfect matching numbers of 2 x 2 x n [11] and 2 x 3 x n cubic lattices [12]: 

K ( 2 x 2 x n ) = H  2a cos 5 + c ° s  5 + c°s2 ' (a) 
j = l  

''4 
K(2 x 3 x n) = Z Cj(det b n j )  1/4 1 + 4cos 2 ~ , (3) 

j = l  

where C;'s are constants, and the matrix b , j  is obtained by diagonalizing the 
matrix Dnj, which shows the adjacency relation among the lattice points. 

By the same method they predicted the general expression and proved some of 
the expressions for the N x n cylindrical lattices [13]: 

K(2m x n) = H 4 cos 2 ~- sin 2 (4) 
j=l k=l 2m + 1 n 

(see ref. [13] for the case ofK((2m - 1) x n))). 
After generalizing the expression for the perfect matching number of 2 x 3 x n 

lattices the expression for that of 2 x m x n lattices was conjectured as follows (see 
ref. [14]): 

b' c' 

K(2 × m x n) = ~ ~-~kbc(det b2,m,n,b,c)~/g(m)h(n), (5) 
b=l c=l 

where kbc and e are constants to be determined by the prescribed method. The quan- 
tities g(m) and h(n) are expressed as 

m 
g(rn) ---- H ( ~ x  2 + vZy 2 + w~lz 2 cos2[gzc/(m + 1)]) 8 , 

g=l  

n 

bin) - II(u   + 2 + cos2[h /In + 1)])',  
h=l 

where/3, 7, ui, vi and wi (i = 1,2) are constants. 
In the limit when m and n respectively approach to infinity the asymptotic form 

ofeq. (5) is obtained as 

In K = x2 1/2 

+ 2+__~x2+__cos2 ¢ d e ,  e =  1/4, (6) 



1-1. Narumi et al. / Perfect matching numbers of cubic l x m x n lattices 69 

where x, yB and zc  are quantities which show the adjacency relation between the lat- 
tice points. It was shown in ref. [14] that  one of  the special expressions of  eq. (6) 
becomes the same equation as the one obtained by Kasteleyn [4]. 

The agreement  of  one of  the special solutions of  the expression in eq. (6) with that  
obtained by Kasteleyn suggests the correctness of  the present calculation for the 
/ x m x n lattice, because the calculation for the I x m x n lattice is a similar exten- 
tion of  the case for the 2 x m x n lattice. 

The aim of  the present paper is to search a key for obtaining the true expressions 
for the perfect matching numbers  of  cubic l x m x n lattices by expanding the 
assumption such as eq. (5) to the one suitable to the l x m x n lattice and to obtain 
an asymptotic  form such as eq. (6), because the analytical t rea tment  of  dimer model  
on cubic lattices has not  yet been solved successfully. 

2 .  P e r f e c t  m a t c h i n g  n u m b e r s  

Each lattice pointp  on the l x m x n cubic lattice (Fig. 1) is expressed by the coor- 
dinates (i,j, k) as follows: 

( i , j , k )  ~--~ p = i +  ( j -  1 ) l +  ( k -  1)lm. (7) 

Examples of  numbering of 2 x 2 x n lattices and 2 x 3 x n lattices are shown in refs. 
[11] and [12], respectively. 

The lattice can be covered by lmn/2 dimers in the canonical order: 

C = [Pl;P2I ~D3;P4] ~5;P6]. . .  , (8) 

where l = even, and 

Pl < P2 < P3 < P4; . . .  ;Piton-1 < Piton. (9) 

The adjacency relation among these lattice points are expressed as follows: 

Dt,m,n,a,b,c = xaOl ® Em ® En + ybFl ® Qm ® En + ~cEt ® Em ® Qn , (10) 

where ® means a direct product  of  matrices, and the quantities xa, Yb and z~c signify 
the bonding between two lattice points. 

n l 

1 
2 

1 

1 2 "'" m 

Fig. 1. l x m x n cubic lattice. 
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Matrices Qn and F. were used by Kasteleyn et al. and have the expressions as shown 
below; E.  is a unit matrix of order n [4,11-13]. 

F . -  

- 1  0 0 0 

0 1 0 0 

0 0 - 1  0 

0 0 0 1 

0 1 0 0 

- 1  0 1 0 

0 - 1  0 1 

0 

On ~ 

( -1)  n ) 

The matrix Dl,m,n,a,b, c is diagonalized by Un 1 a n d  Un, where 

Un (j, k) = i ~ - - ~ g  sin n + l '  (11) 

Un 1 (j, k) = I n - - ~ ( - i )  k sin n+l'JkTr (12) 

Dl,m,n,a,b,c -- UI  1 ® U~ 1 ® UnlDl,m,n,a,b,cU! ®Um ® Un 

= xaUi-lQtU  ® UC. 1EmUm ® U£IE, U, 

+ ybUflFiUt  @ UmlQmUm ® U~IEnUn 

q- Z I c U l l E i u l  ® U~nlEmUm ® UnlQnUn. (13) 

The eigenvalues of matrices Qt, Qm and Qn are denoted as Af, /~g and vh, 
respectively: 

Af = 2icos[fTr/(l + 1)], (14) 

#g = 2icos[gTr/(m + 1)], (15) 

uh = 2icos[hTr/(n + 1)]. (16) 

The diagonalized matrix bt,.,,n,a,b,c is expressed by the use of the above eigenvalues 
as 
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D,,.,o,o. : H I° ' ' '  .=, 

-M~ 

where 

AS- ~o'V 

m 

• • • H  
g=l 

O2,1 - m g  

Ol,n 

02,n - Mg 

01,1 

g g  ~ ybl~g 

Nh ==- i cvh  

Oitj ~ Ai + Nj.  

( f =  1 ,2 , . . . , l ) ,  

( g = l , 2 , . . . , m ) ,  

( h = l , 2 , . . . , n ) ,  

-M~ 

Ol,n 

(17) 

The above matrix Ol,m,n,a,b,c is reduced to 

flfI L)l,m,n,a,b,c = g=l h=l 02,h - M g  

- m g  Ol,h 

01,2 

-M~ 

02,2 --Mg 
° 

-M~ 

Or,2 

The determinant following the two product signs is decomposed as follows (see 

From this the following expression is 

(18) 

eq. (23) in ref. [13]): 

( Ol,hO2L,h- M2)( O2,hO2L-l,h- M 2) 

• "" (OL,hOL+l ,h  -- M2g) ,  

where l---2L (L is a positive integer)• 
obtained: 

1/2 m n 
det~)l,m,n,a,b,c= H H H ( O f , h O f ' , h - -  M2) ,  

f=lg=lh=l 

wheref '  - 2L - f  + 1 = l - f  + 1. 
By the use of the definition 

ol,h = AI + Uh =xoAj+Z'c.h, 
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Of,h Of,,h is calculated as 

O:,hOi,,h = + + + 

F r o m  the equat ions  

x:+x:, =o 

and 

(19) 

(20) 

AfAf, = 4cos2[fTr/(l + 1)], (21) 

together  with eq. (16), one can obtain 

Of,hOf,,h = 4X~a COS2[fTr/(l + 1)] -- 4z~ cos2[hTr/(n + 1)]. 

Then  the de te rminant  can be expressed as 

1/2 m n 

detl)l,m,n,a,b,c = HHX~(4x~aCOS2[fTr/(l  + 1)] 
f = l  g=l  h=l  

+4y2cos2[gTr/(m+ 1)]+4~cos2[hTr/(n+ 1)]), (22) 

where z~ -- - z  'ff > 0. 
According to the case of  2 × 3 x n lattices, where the r igorous solut ion was given, 

the expression of  the perfect match ing  number  for ! x m × n lattices is conjectured 
to be [14] 

K(I x m × n) 

d ff c' I t m t n ~ 

= ~ - ~ - ~ k a b c H I I H { 4 x ~ a c o s 2 [ f T r / ( l ' +  1)] 
a= l  b=l  c=l  f = l  g-1  h=l  

+ 4y2 cos2[gTr/(m ' + 1)] + 4z2 cos2[hTr/(n ' + 1)]}', (23) 

where l ~ = kll ,  rn' --- k2m and n t = k3n, and e, kl,  k2 and k3 are constants  to be 
determined.  

The  assumpt ion  of  eq. (23) is slightly different f rom the case of  the (2 x m x n) 
lattice. Tha t  is, the denomina to r  was deleted and the indices l, m and n were scaled 
to l', m' and n'. 

An  example is shown as follows: 

K(2 x 3 x 4) 

a '= l  b'=5 c '=l l'=2ml=2n'=4 

= ~ ~ _ ~ k a b c  l I  H I I { ' " } "  
a=l  b=l  c=l f = l  g=l  h=l  
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5{4 
= Z kb II(4x]a cos217r/31 + 4y~ cos217r/31 + 4~cos2[hTr/51) 1/8 

b=l h=l 

4 
x II(4x]a cos2127r/3] + 4y 2 cos217r/3] + 4~  cos2[hTr/5]) 1/8 

h=l 

4 
x I~(4X]a cos217r/3] + 4y~ cos2127r/3] + 4~  cos2[hTr/5]) I/8 

h=l 4 / 
x II(4  cos2127r/3] + 4y 2 cosa[2 r/3] + 4~  cos2[h~r/5]) 1/8 . 

h=l 
2 = = 2yj ,  z c = - z  2, and 

kb = kj  = ~ ( - Q j  - Qj) , 

then eq. (28) for n = 4 in ref. [12] is obtained. 
Further study of the expression for perfect matching numbers for the 2 x 4 x n, 

2 X 5 x n, and other lattices might decrease the number of summations ~ in 
eq. (23). However, the conclusion of the present treatment is unchanged. 

u1/mn Calculating K2 - limm,n+oo *~2,m,n, the following expression for the asymptotic 
value is obtained: 

In K2 = 2e In YB 

4e['~/2 _ 4 " - -  ln([~2-t-f/2 cos2 ~]1/2-[ - [1 -1- ~-2 -1- r]2 COS2 ~ ] l / 2 ) d ~ ,  (24) 
71" d0 

Z 2 / y 2  where ~2 ____ x2 /43~  and ~72 ~ c~ s.  
Substituting ~2 = 0 and e = 1/4 into eq. (24) the same expression was obtained 

as by Kasteleyn [4]. (See the equation just below eq. (17) in ref. [4].) 

3. Asymptot ic  value of the perfect matching number  K 

Let us put the maximum values of the coefficients ~ ,  y~ and z 2 in eq. (23) as x2~, 
)~n and ~c, respectively. 

The expression Kt,,,,n in eq. (23) can be changed by the use of the quantities x-z~, 
and z 2 to 

[1'/2 m'/2 n' f l'/2 m'/2 n' "1 "l 2e 
Kl,m,n = / H H ~ O ' m a x [ k A s c + ~ - ~ Z ~ - ~ k , , b c H I I I I O ' ~ [  , (25) 

kf=l g=l h=l a~kA b¢B c~C f= l  g=l h=l O'max J ]  

where 
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and 

cr ~ 4X~a cos2[frr/(l' + 1)1 + 4y~ cos2[grr/(m'+ 1)1 

+ 4 ~  cos2[hrc/(n' + 1)], (26) 

~rmax =- 4x2A cos2[frr/(l ' + 1)] +4y2cosE[grr/(m ' + 1)] 

+ 4z~ cosZ[hrr/(n ' + 1)]. (27) 

Since the following expression has been established: 

lirn H H I ~  Cr//Ormax d 0 , 
l 'm'n"+°°~fJ'% "L h 

the parentheses in eq. (23) become 

lirn { }2,/tmn= 1. (28) 
l~m~n---+ oo 

Therefore, the perfect matching number K per lattice point can be shown to be 

K ~  lirn K 1/tm~ 
l,m,n--+oo 

/ 1/2 rolE n \ 2ellmn 

----- lirn [ I I ] - I I ~ c r m a x  ) l,rn,n--+oo V =  1 g=l h=l 

--~l/lmn (29) lim *" *,m,n 
l,m~n--+oo 

The expression for Kt,,,v, is given by 

( I/2 m/2 n 

-Kl'm'n = {Yl~'n/Ef~l = = 

x 4({ 2 cosZ[frr/(l + 1)] + cos2[grr/(rn + 1)] 

+ rl 2 cos2[hrc/(n + 1)1) , (30) 

where 

~2 = x2a/y~ and r/2 - Zac/y~. 

Applying the following identity to eq. (30) (see eq. (14) in ref. [4]): 

~ I grr ] 4 u 2 + cos 2 
g=l L r n + l  

[u + (1 + u2)1/2] '~+' - [ u -  (1 + u2)I/2] m+I 
= 2(1 + u2) ~/2 ' (31) 
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the expression for Kt,m,n becomes 

ll2 f i  [u + (1 + u2)112] m+l - [u - (1 -t- u2)1/21 m+l 
Kl,m,n = H .t.t 2(1 + U2) 1/2 , (32) 

f = l  h=l 

where 

u 2 _ ~2 cos2[fTr/(l + 1)] + r/2 cos2[hTr/(n + 1)]. 

By the use of eq. (32), the asymptotic value of Kt,m,,, in the limit of rn ~ cx~ 
becomes 

_-=I /m 
Kt~ = lim Klm ~ 

m---~oo 

[ 1/2 n -] 24 

= [ Y l ~ / 2 I I I I { u + ( 1  +u2)  1/2] (33) 
k f = l  h=l 

From eq. (33) the logarithm of  Kt~ is given by 

24 

In Kt. = nle In YB + In {u + (1 + U2)1/2} 1/2 

namely, we have 

l n 

In K:/ '  = ne In Ys + -e- ~)-" In H { u  + (1 + u2)X/2} 1/2 ly-  
h=l 

(34) 

The asymptotic value of K y  i in the limit of I ~ oo can be expressed as an integral 
as follows: 

In Ktn =- lira In rcXlt "~ln 
n - - +  o o  

/o e ,r E ln[{~2 c°s2 ~b + 7/2 cos2[hTr/(n + 1)]} 1/2 = nc In YB + ~ h=l 

+ {1 + (2 COS 2 ~b + 772 cos2[hTr/(n + 1)]}l/2]dq~. (35) 

Moreover,  the asymptotic value of ln  K~ in the limit ofn --. oo is obtained as 

In K ~- lim In r"l/n 
n ---* o o  

4e f•/2 f , q 2  ln[{~2 cos: q~ + r/: cos: 0} 1/: 
= e lnyB +~-7Jo Jo 

+ {1 + ~2 cos 2 q~ + r/2 cos 20}l/2]dOdq5" (36) 
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Eq. (36) can also be shown as 

4e F/2 f '~/2 ln[{xEA cos2 q~ + Z 2 C O S 2 O } I / 2  
In K = ~-2 JO JO 

+ {y2 + X2A COS 2 ~b + ~ccos  2 0}' /2]d0d~. (37) 

Eqs. (36) or (37) is the limit of  the configurat ional  par t i t ion funct ion for one lat- 
tice point  of  the l x m x n lattice. 

Subst i tut ing )CA = Y S  --- zC  = 1 into eq. (36) or (37), the limit of  the number  of  
dimer  ar rangements  g ( l m n / 2 )  can be calculated (see ref. [4]). 

The "molecular  f reedom" ~2 which is defined as the number  of  a r rangements  
per d imer  is expressed as 

~o2 = { g ( l m n l 2 )  } 2 f l ' "  

= {Ktrnn(XA = YB = z c  = 1)}  2/tmn • (38) 

In the lattice of  the limit of  l, m and n (l, rn, n --~ ec), the asymptot ic  value of  ~2, 
i.e., ~ )  is 

~ ) =  { K ( x A  = y B  = z c  = 1)} 2 =  1.519448336 . . . .  

The  K number  is 9, for example, for the case of  the 
2 x 2 x 2. Therefore,  

q0 2 = (9) 2/2x2x2 = V~ = 1.732. .-  

(39) 

smallest cubic lattice 

in this case (see ref. [3] for the values of K in the case of  various polycube lattices). 
The  above values are somewhat  smaller than  the same kind of  value, 

1 .791622812. . . ,  for the m x n lattice (see ref. [4]). 
The  value of  the limit ~ )  was obta ined by the numerical  integral of  the follow- 

ing equation:  

In K ( x A  = y B  = Z c  = 1,e = 1/4) 

_-- __1 --/"/2 r/~/2 ln[(cos2 q5 + cos 2 O) l/z 
71"2 JO dO 

+ (1 + cos 2 q5 + cos z O)l/2]dOd(~. (40) 

The  cons tant  value e = 1/4 was obtained according to the case of  2 x m x n lattice. 
The  next task is to find other  keys for obtaining the true expression for the perfect  

match ing  numbers  of  3-dimensional  lattices and also for solving the 3-dimensional  
Ising model  [15,16] on the basis of  the m e t h o d  described above. 
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