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A general expression of the perfect matching number for the / x m x n cubic lattice
was conjectured and examined for infinitely large systems. The asymptotic value of the
square of the perfect matching number was calculated by numerical integration. The
present treatment will give a key to obtain the true analytic solution of the perfect match-
ing numbers for the 3-dimensional lattices.

1. Introduction

The number of perfect matching for certain kinds of lattices is a key quantity in
the theoretical treatments of adsorption of diatomic molecules on metallic surfaces
(dimer statistics), nearest-neighbor interaction on the lattice points in anti-ferro-
magnetic metals (Ising model), and stability of aromatic hydrocarbon molecules
(Kekulé structures). Thus the analytical expression for the perfect matching num-
ber, K, has been one of the continuous targets in these fields, rather than in the
graph theory [1-3].

Especially for the 2-dimensional planar lattice, Kasteleyn [4] and Temperley
and Fisher [5,6] independently derived the following beautiful expression:

LR km I
_ ~2mn 2 2
K(2m x2n) =2 gg[cos <2m+1> + cos (2n+1ﬂ . (N
It was shown that for the m x ntoruslattice the K number is given as a linear combi-
nation of pfaffians [4].

On the other hand, Hosoya and Ohkami devised an operator technique [7,8]
which enables systematic derivation of the recursion formula of the perfect match-
ing numbers for periodic lattices. Hock and McQuistan obtained the recursion for-
mula of various series of graphs [9,10].
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By the use of the results obtained by the operator technique and the method of
determinant given by Kasteleyn the present authors derived the expressions for the
perfect matching numbers of 2 x 2 x n[11]and 2 x 3 x ncubiclattices[12]:

K(2x2xn) HZz[cos ( )+cos (3) +cosz<n1:1)}, (2)
5 ke 1/4
K@ x37m) =) Gleet Dr) 1/“/H{1+4cos2(———n+l)} NG
1

j=
where C;’s are constants, and the matrix D, is obtained by diagonalizing the
matrix D, ;, which shows the adjacency relation among the lattice points.
By the same method they predicted the general expression and proved some of
the expressions for the m X 71 cylindrical lattices [13]:

K(2m x n) = ﬁ ﬁ{ (cos 1 + sin® (—2!—;—1)—#)} (4)

j=1 k=

(see ref. [13]for the case of K((2m — 1) x n))).

After generalizing the expression for the perfect matching number of 2 x 3 x n
lattices the expression for that of 2 x m x n lattices was conjectured as follows (see
ref. [14]):

K(2 x m x n) ZZ/«M det Dy pmppc)/g(mh(n), (5)

=] ¢=1
where k;. and e are constants to be determined by the prescribed method. The quan-
tities g(m) and h(n) are expressed as

g0m) = [[(2 + 35 + Wiz costlgm/(m+ D)),

g=1
= I_I(ugx2 + v3y? + wiz cos’[hn/(n + 1)])7,
h=1
where 3, v, u;, viand w; (i = 1,2) are constants.

In the limit when m and n respectively approach to infinity the asymptotic form
ofeq. (5)is obtained as

/2 1/2
anzl/ ln({—z—z—}*zzccoszcﬁ}
0

™

1/2
+[y3+ +22c<:082¢] )d¢, e=1/4, (6)
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where x, ygand z¢ are quantities which show the adjacency relation between the lat-
tice points. It was shown in ref. [14] that one of the special expressions of eq. (6)
becomes the same equation as the one obtained by Kasteleyn [4].

The agreement of one of the special solutions of the expression in eq. (6) with that
obtained by Kasteleyn suggests the correctness of the present calculation for the
! x m x nlattice, because the calculation for the / x m x nlattice is a similar exten-
tion of the case for the 2 x m x nlattice.

The aim of the present paper is to search a key for obtaining the true expressions
for the perfect matching numbers of cubic / x m x n lattices by expanding the
assumption such as eq. (5) to the one suitable to the / x m x nlattice and to obtain
an asymptotic form such as eq. (6), because the analytical treatment of dimer model
on cubic lattices has not yet been solved successfully.

2. Perfect matching numbers

Each lattice point p on the l x m x ncubiclattice (Fig. 1) is expressed by the coor-
dinates (i, , k) as follows:

(i,j,k) o p=i+({—-DI+(k—-1)im. (7
Examples of numbering of 2 x 2 x nlatticesand 2 x 3 x nlattices are shown in refs.
[11]and[12], respectively.

The lattice can be covered by /mn/2 dimers in the canonical order:

C = |p1; p2| |p3; pal |ps;psl - - - (8)
where/ = even, and

p1 < p2 < p3 <Ppas...;Phmn-t < Plmn - 9)
The adjacency relation among these lattice points are expressed as follows:
Dl,m,n.a,b,c = xan @En®E, + )’bFl ® Qm ® E, + Z,CEI ®En® Qn 3 (10)

where ® means a direct product of matrices, and the quantities x,, y, and z/, signify
the bonding between two lattice points.

n I

1 2 m

Fig. 1.1 x m x ncubiclattice.
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Matrices Q, and F, were used by Kasteleyn et al. and have the expressions as shown
below; E, is a unit matrix of order n[4,11-13].

(—1000 \

01 0 O
0 0 -1 0
E=10 0 0 1 !
(-1)"
0 1 0 0
-1 0 1 0
o.,=| 0 -1 0 1
0 0
The matrix Dj  » 45 is diagonalized by U, ! and U,, where
2 . Jjkm
Unj, k) = | —=F 11
w0, k) 1l S Tnrl (11)
2 ke
1/ _ ko JKT
Uy 0,) = [ (=) sin 2 (12)
Dl,m,n,a,b,c = Ul—l & U,;l @ U,,-lDl,m,n,a,b,cUl Q@Un® Un
=x%U' QU ® U, EnUn ® U;'E,U,
+ybU1—1F1UI @ U,;,-IQmUm ® Un-lEnUn
+ZUEU, @ U ' EnUn ® U Q,U, (13)

The eigenvalues of matrices 0;, O, and Q, are denoted as Ay, p, and vy,
respectively:

Ar = 2icos[fn/(I+1)], (14)
g = 2icoslgn/(m + 1)], (15)
vy = 2icoslhr/(n+1)]. (16)

The diagonalized matrix D,,,,,,,,,,,,b,c is expressed by the use of the above eigenvalues
as
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Oy, -M, O -M,
i m 01 —M, m 0y —M,
Dl,m,n,a,b,c - H . : H
g=1 " g=1
—M, O —M, O12
Ol,n —Mg
ﬁ 0, -—Mg
g=1 . ,
_Mg Ol,n

where
Afs—:xa)\f (f=1,2,...,l),
MgEJ’bllg (g=1)27"'7m)7
NhEZIcV;, (h=1,2,...,n),

Oi;=A+N;.
The above matrix f);}m,,,,a,b,c isreduced to
O -M,
Dimpape = ﬁ f_[ O _Mg . (17)
g=1h=1 -
~M, O

The determinant following the two product signs is decomposed as follows (see
eq. (23) inref. [13]):
(O 4O p — Mé)(oz,hOZL-l,h — M;‘)

(O pOrs14 — Mﬁ),

where / = 2L (L is a positive integer). From this the following expression is
obtained:

/2 m n

det Dl,m,n,a,b,c - H H H(Of,hof',h - M;) ’ (18)

f=1g=1h=1

wheref' =2L—f+1=1—-f+1.
By the use of the definition

Of,h == Af + Ny = x,,/\f -+ Zlcl/}, ,
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Oy 1Oy pis calculated as

Or4Opp = XA A + 2203 + Xazin(y + Apr) (19)
From the equations

A+ =0 (20)
and

My = 4dcos?[fr/(1 +1)], (21)

together with eq. (16), one can obtain
O 4Op p = 4x2 cos*[fm/(1 4 1)] — 422 cos’[hm/(n + 1)] .
Then the determinant can be expressed as

2 m n

det Dimnape = H T T1@% cos?(fm/ (1 + 1))

=1 g=1 h=1
+4yj cos’lgm/(m + 1)] + 4z; cos’ [/ (n + 1)), (22)

wherez2 = —z2 > 0.

According to thecase of 2 x 3 x nlattices, where the rigorous solution was given,
the expression of the perfect matching number for / x m x n lattices is conjectured
tobe[14]

K(I x m x n)

bl C' I n

kabcﬂﬁ {4x% cos?[fm/(I' +1)]
721 g=1 b

i
M~

b=1 c=1 1

8
Il
-

+ 4y2 cos®[gn/(m' + 1)] + 422 cos?[hn/(n' 4+ 1)]}, (23)

where ' = kyl, m' = koym and n' = ksn, and ¢, ki, k; and k3 are constants to be
determined.

The assumption of eq. (23) is slightly different from the case of the (2 x m x n)
lattice. That is, the denominator was deleted and the indices /, m and n were scaled
tol',m' andr’.

An example is shown as follows:

K(2 x 3 x4)

X

a=1¥=5c=1 I'=s2m'=2n'=4

=3 kane {--)¢

a=1 b=1 c=1 f=1g

I
—
x>

—
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I
Mu

k”{ ﬁ(a,xi cos?[m/3] + 4y? cos?[x/3] + 422 cos*[hr/5]) /B

h=1

o
i

1

(4% cos?[27/3] + 4y? cos?[/3] + 42° cos*[hm /5]) '/

E»

ES
Il
—-

(42 cos?[m/3] + 4y} cos?[2m/3] + 422 cos?[hr/5)) /2

. T

>
1

(4x2 cos®[2m/3] + 4y2 cos?[2m/3] 4 422 cos [hvr/S])l/g}
I

Ifx; = x%,y; = 27,22 = —2%,and

ky = kj = \/—A4;4;(0; — Q)),

then eq. (28) for n = 4 inref. [12] is obtained.
Further study of the expression for perfect matching numbers for the 2 x 4 x n,
2 x 5 x n, and other lattices might decrease the number of summations 5" in
eq. (23). However, the conclusion of the present treatment is unchanged.
Calculating K, = limy, n_co K2'™, the following expression for the asymptotic

| 2,mn?
value is obtained:
In Ky =2¢ln yp
4 w/2 o .
= [ n(@+rcos? @) + 1+ 8+ cos?¢])de,  (24)
0

where £2 = x?/4y} and n* = 2%/y%.
Substituting £2 = 0 and € = 1/4 into eq. (24) the same expression was obtained
as by Kasteleyn [4]. (See the equation just below eq. (17) in ref. [4].)

3. Asymptotic value of the perfect matching number K

Let us put the maximum values of the coefficients x2, y? and 22 in eq. (23) as x3,

y% and 72, respectively.
The expression Kj» in eq. (23) can be changed by the use of the quantities x2,

y3andz% to

V2mj2 o rj2zn 2 o 2e
Kl,m,n = l:/l_I H Ha'max{kABC + Z Z Zkabc H H H }} , 25)

=1 g=1 h=1 aFAbEB cAC  f=1 g=] h=] Omax
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o = dx2cos®[fn/(I' + 1)] + 4y2 cos?[gm/(m' + 1)]
+ 472 cos’[hr/ (W + 1)], (26)
and
Omax = 4x% cos?[fn/(I' + 1)] + 4% cos?[gn/(m' + 1)]
+ 4z% cos*[hn/(n +1)]. (27)

Since the following expression has been established:
i T ol =0,
S & h
the parentheses in eq. (23) become

lim { ¥/ =1, (28)

I .mn—o0

Therefore, the perfect matching number K per lattice point can be shown to be

K= lim K!/m

I mn—o0

lim H H H Tmax

1/2m/2 n )ZE/Imn

Im n—0o \ 23 2=l he
= lim El{,l,",’," (29)

The expression for K , » is given by

1/2 m/2 p
El,m,n — { Imn/2 H H H

f=1lg=1h=
x 4(€* cos®[fn/(I + 1)] + cos?[gn/(m + 1)]

2e
+ n* cos?[hn/(n + 1)])} , (30)
where
=x4/vy and 7' =z¢/yp.
Applying the following identity to eq. (30) (see eq. (14) in ref. [4]):
m/2

H4[u2+cos n 1]

_ [u+ (l + uZ)i/Z]m-H _ [u . (1 + u2)i/2]m+1
- 2(1 4+ u2)'/? : (31)
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the expression for —I'(-,,m‘,, becomes

. 12 n 1 22+ 1/2ym+1
szn_HH[u+( +u’)"] [u— 1+

, (32)
F=1 h=1 2(1+ uz)l/z

where
u?* = & cos?[fr/(1+ 1)) + n* cos [hn/(n + 1)) .

By the use of eq. (32), the asymptotic value of -Ifl,m,,, in the limit of m — o0
becomes

K, = lim Kl/m

oo imn
- [ WZHH{uqL 1+1) ‘/2} : (33)
f=1h= (
From eq. (33) the logarithm of K}, is given by
I n 2e
In K, =nlelnyg+in [/H H{“ +(1+ uz)l/z}x/zJ

=1 h=1

namely, we have
i n
In K./ = neln y3+-§§:mﬂ{u+ (1 4+ 2) /22 (34)
=1 k=l

The asymptotic value of K,ln/ ! in the limit of / — oo can be expressed as an integral
as follows:

InKp,=lim In KW

n—+o0
T n
=neln yg +-§r-/ Zln[{§2 cos? ¢ + 1 cos? [/ (n + 1)]}'/2
0 p=1
+ {1 + & cos® ¢ + i cos?[hr/(n + 1)]}/*|dg . (35)
Moreover, the asymptotic value of In K, in the limit of n — oois obtained as

InK=lim In Kl/"

n—oQ

/2
*elnyg+—/ / n[{£2 cos? ¢ + 7 cos? 6}/
+ {1+ & cos? ¢ + n? cos? 0}'/*d8d$ . (36)
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Eq. (36) canalso be shown as
/2
In / n[{x% cos? ¢ + ZZcos? 6}/

+ {34 + x4 cos® ¢ + 2% cos® 0} /?|dbd ¢ . (37)

Egs. (36) or (37) is the limit of the configurational partition function for one lat-
tice point of the / x m x nlattice.

Substituting x4 = yg = z¢ = 1 into eq. (36) or (37), the limit of the number of
dimer arrangements g(/mn/2) can be calculated (see ref. [4]).

The “molecular freedom” ; which is defined as the number of arrangements
per dimer is expressed as

2 = {g(lmn/2)}*/"™"
= {Kimn(x4 = y5 = zc = 1)}/"™". (38)

In t(he5 lattice of the limit of /,m and n (/,m,n — o0), the asymptotic value of ¢»,
- o) «
1.e.,p, s

o8 = (K(x4 = yp=zc = 1)}* = 1.519448336 . .. . (39)

The K number is 9, for example, for the case of the smallest cubic lattice
2 x 2 x 2. Therefore,

0y = (9)2/2)(2)(2 _ \/i =1.732-..

in this case (see ref. [3] for the values of K in the case of various polycube lattices).
The above values are somewhat smaller than the same kind of value,
1.791622812.. ., for them x nlattice (see ref. [4]).
The value of the limit cp(2°°) was obtained by the numerical integral of the follow-
Ing equation:

an(XA =yp=2ZCc = 1,6= 1/4)
w/2
/ [(cos® ¢ + cos? 9)1/2

+ (1 + cos? ¢ + cos? 6)/2)d6d ¢ . (40)

Theconstant valuee = 1/4 was obtained according to the case of 2 x m x nlattice.

The next task is to find other keys for obtaining the true expression for the perfect
matching numbers of 3-dimensional lattices and also for solving the 3-dimensional
Ising model [15,16] on the basis of the method described above.
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